

Equations and Inequalities **Simultaneous (linear and non-linear) equations** We can solve a linear equation and a non-linear equation simultaneously by substitution.

Intersection between a curve and a straight line

Finding the points of intersection between $y = ax^2 + bx + c$ and y = mx + k is equivalent to solving the two equations simultaneously, which results in solving $ax^2 + bx + c = mx + k$, or $ax^2 + (b - m)x + (c - k) = 0$.

Discriminant of $ax^{2} + (b - m)x + (c - k) = 0$	Nature of roots of $ax^2 + (b - m)x + (c - k) = 0$	Number of points of intersection between $y = ax^2 + bx + c$ and y = mx + k
> 0	2 real and distinct roots	2
= 0	2 real and equal (repeated) roots	í
≥ 0	2 real roots	1 or 2
< 0	No real roots	0

Quadratic inequalities

To solve a quadratic inequality in x, we could follow these steps.

- Step 1: Bring all the terms to the left side of the inequality.
- Step 2: Factorise the quadratic expression on the left side.
- Step 3: Sketch the quadratic graph to deduce the range of
 - values of x that satisfy the inequality.

Manipulation of surds

Using properties: For $a, b > 0, \ \sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
$$\sqrt{a} \times \sqrt{a} =$$

a

Rationalising the denominator:

If the denominator is in the form \sqrt{k} , multiply the numerator and denominator by \sqrt{k} .

If the denominator is in the form $a + b\sqrt{k}$, multiply the numerator and denominator by its conjugate $a - b\sqrt{k}$.

If the denominator is in the form $a\sqrt{h} + b\sqrt{k}$, multiply the numerator and denominator by its conjugate $a\sqrt{h} - b\sqrt{k}$.

Solving equations involving surds

We can square both sides of an equation involving surds to solve for the unknown, e.g.

$$\sqrt{x-1} = 3 \Rightarrow \left(\sqrt{x-1}\right)^2 = 3^2.$$

Always check the solutions by substituting the solutions into the original equation.

Finding unknowns in equations involving surds

We can use the following property of surds to find unknowns in an equation.

If $a + b\sqrt{k} = c + d\sqrt{k}$, where a, b, c, d are rational and \sqrt{k} is irrational, then a = c and b = d.

Journal Writing

Polynomials and Partial Fractions

Remainder Theorem

When f(x) is divided by ax - b, the remainder is $f\left(\frac{b}{a}\right)$. In particular, when f(x) is divided by x - a, the remainder is f(a).

Factor Theorem

If x - a is a factor of f(x), then f(a) = 0. Conversely if f(a) = 0, then x - a is a factor of f(x).

Sum and difference of cubes

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

 $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

Partial fraction decomposition

f(x) and g(x) are polynomials, where $g(x) \neq 0$.

If $\frac{f(x)}{g(x)}$ is proper, apply the

rules in this table to perform partial fraction decomposition.

g(x) has	Write partial fraction(s) as
distinct linear factors: ax + b, cx + d	$\frac{A}{ax+b} + \frac{B}{cx+d}$
repeated linear factors: ax + b, ax + b	$\frac{A}{ax+b} + \frac{B}{\left(ax+b\right)^2}$
irreducible quadratic factor: $x^2 + c^2$	$\frac{Ax+B}{x^2+c^2}$

If $\frac{f(x)}{g(x)}$ is improper, express it as the sum of a proper fraction and a polynomial first.

Factorising cubic polynomials

Follow these steps to factorise f(x).
Step 1: Use the Factor Theorem to find a linear factor of f(x), say x - k.
Step 2: Write f(x) as (x - k)(ax² + bx + c).
Step 3: Substitute values of x or equate coefficients and/or constants to find the unknowns a, b and c.

Solving cubic equations

To solve f(x) = 0 for x, factorise f(x) and then equate each factor of f(x) to 0.

Laws of indices

For a, b > 0, and rational numbers m and n, $a^m \times a^n = a^{m+n}$ $\left. \begin{vmatrix} a^m \\ a^n \end{vmatrix} = a^{m-n} \\ a^n \times b^n = (ab)^n \\ \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \end{vmatrix}$ laws for the same index

Solving exponential equations

- By equating indices: $a^x = a^n \Rightarrow x = n, a > 0 \text{ and } a \neq 1$
- By substitution
- By taking logarithms

$$= \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}$$

Journal Writing

Applications of Straight Line Graphs

An equation of the form $y = ax^n$, where *a* and *n* are constants, can be expressed in linear form Y = mX + c.

 $y = ax^{n}$ lg $y = n(\lg x) + \lg a$

$$Y = \lg y, X = \lg x, m = n \text{ and } c = \lg a$$

An equation of the form $y = ab^x$, where a and b are constants, can be expressed in linear form Y = mX + c.

$$y = ab^{x}$$

lg y = (lg b)x + lg a

$$Y = \lg y, X = x, m = \lg b$$
 and $c = \lg a$

